
Java Technology, from Netscape to Android

1



2



Outline
while (today_talk) {

The World in the ’90();
Computer Science in ’90 ();
The dawn of java ();

Java technologies ();
Introduction ();
Memory management();
Virtual Machines ();
Compilation Strategies ();

The rise of android ();
Android implementation of VMs ();

if (end) {
Conclusions ();

}
}

3



The World in the ‘90

4

• George H. W. Bush on times

• The destruction of the Berlin Wall by East Germany

• Hubble Space Telescope launched
(Space Shuttle Discovery mission)

• @Cinema Back to the future 

• Nintendo Game Boy on market



Computer Science in ‘90

Almost immediately, enthusiasts began developing and 
improving it, such as adding support for peripherals and 
improving its stability.

- Better performance
- Improved GUI
- Multitasking (80386)
- Office (word, excel)

The Linux kernel (Linus Torvalds) is released to several 
Usenet newsgroups. 

Microsoft ships the first successful version of 
Windows 3.0 (DOS compatible) on IBM PCs

5



The Antefact
1990 HTML@CERN by Time Berneers-Lee

- Hypertext Markup Language

1990 PERL@UNISYS by Larry Wall
- Scripting Language

1991 – JAVA@SUN By James Gosling
- Write Once, Run Anywhere (WORA)
- Platform independent object oriented programming language

6



The dawn of Java 1/3

James Gosling got the idea for the first Java Machine (JV) while writing a
program to port software from a PERQ by translating Perq Q-Code to VAX
assembler and emulating the hardware.

This concept was just right for the Internet, which was just starting to 
take off. 

In 1995, Gosling team announced that the Netscape Navigator browser 
would incorporate Java technology.

Java is used for developing all types of cross platform applications (Mobile, 
Desktop, server-side and dynamic web applications)

Today, Java not only permeates the Internet, but also is the invisible force
behind many of the applications and devices that power our day-to-day
lives. From mobile phones to handheld devices, games and navigation
systems to e-business solutions, Java is everywhere! 7



NetScape Navigator
Flagship product of the Netscape Communication Corp. that dominated web browser 
in terms of usage share between 1990-2000

Netscape's contributions to the web include

• Javascript (which was submitted as a new 
standard to ECMA International

• Java support (“Netscape Plugin Application 
Programming Interface” NPAPI)

• The rise of web usage on mobile device browsers (without plugins support),
increasingly led browser makers to restrict and remove plugin support from their
products to unify the set of features available across desktop and mobile versions.

• The “app store” model grew for reasons related to simplicity, security, and
centralized.

From the Plugin-store to the app store

8



The dawn of Java 2/3

DATA

XML does for data what Java does for application

GENERAL-PURPOSE 
APPLICATION

XML describes 
data

Java describes 
the behavior 

behind the data

• XML gives Java something to do, Java lets XML do something useful
• XML/Java have reciprocal duties in enabling the Web, Java is the brain of the Internet, 

XML the voice 9



The dawn of Java 3/3
Java is not compiled to the binary instructions code recognized by a processor. 

Java is translated into a Java class file which contains a stream of 
byte code, processed at run time by an intermediate program called 
Java Virtual Machine (programs, chips)

Write Once, Run Anywhere (as long you have the JVM and Java API)

Some (impressive) facts and figures:
• 97% of Enterprise Desktops Run Java
• 89% of Desktops (U.S.) Run Java
• 9 Million Java Developers Worldwide
• 3 Billion Mobile Phones Run Java
• 100% of Blu-ray Disc Players Ship with Java
• 5 Billion Java Cards in Use
• 125 million TV devices run Java

From laptops to datacenters, game consoles to scientific supercomputers, 
cell phones to the Internet, Java is everywhere!

10



Java Technologies

JAVA Standard Edition (SE)
Applet, awt, Rmi, jdbc, Swing, collections, 
xml binding, JavaFX, Java streaming

JAVA Enterprise Edition (EE)
Servlet, websocket, java faces, 
dependency injection, ejb, Persistence, 
Transaction, Jms, batch api

JAVA Micro Edition (ME)
Wireless Messaging, Java ME Web 
Services, Security and Trust Services API
Location, Mobile XML API

Development tools, deployment technologies, and
other class libraries and toolkits used in Java
applications

Built on top of the Java SE platform. The Java EE
platform provides an API and runtime environment for
developing and running large-scale, multi-tiered,
scalable, reliable, and secure network applications.

The Java ME platform provides an API and a small-
footprint virtual machine for running Java
programming language applications on small devices,
like mobile phones. The API is a subset of the Java SE
API, along with special class libraries useful for small
device application development. Java ME applications
are often clients of Java EE platform services.

These platforms are specifications; they are norms, not software!

11



PHPC

C++

Python

Javascript

C#

12

• In most scenarios 
you don't have to 
pay for almost 
anything except for 
the developers. 

• There are a lot of 
free and open 
source Production 
Grade tools for 
java. 

1990

1985

19951972

1991

2000

Java Technologies

Java is nearly as 
fast as C++. It 
has been refined 
over the last 20 
years and is one of 
the most stable 
languages out 
there.

A fast and reliable 
programming languageJava is free*

*The Java Development Kit (JDK) is free to download and 
use for commercial programming, but not to re-distribute.



Java Technologies: the bigger picture

13



The Java Virtual Machine (JVM)

• The JVM provides a run-time environment in which Java bytecode can be executed.
• The JVM walks your computer through the execution of bytecode instructions.
• The JVM examines your bytecode and carries out the instructions described in the bytecode.
• The JVM interprets bytecode and makes Java more portable than programs in any other language.

A JVM is distributed along with Java Class Library, a set of standard class libraries (in Java bytecode) that 
implement the Java Application Programming Interface (API). 

These libraries, bundled together with the JVM, form the Java Runtime Environment (JRE)

A VM is a high-level abstraction on top of the native operating system, that emulates a physical machine.
The JVM serves as an interpreter between Java’s run-anywhere bytecode and your computer’s own system.

JAVA 
SOURCE 

CODE

JAVAC
COMPILER

JAVA
VIRTUAL 

MACHINE

14



The Java Virtual Machine(s)
Stack Based (JVM, .NET) Register Based (Lua, Dalvik)

1
2
3
5

Stack before

3
3
5

Stack after

1. POP 1
2. POP 2
3. ADD 1, 2, result
4. PUSH result

The memory structure where the operands are
stored is a stack data structure

• The data structure where the operands are
stored is based on the registers of the CPU.

• There is no PUSH/POP operations, but the
instructions need to contain the addresses (the
registers) of the operands

The overhead of pushing to and popping 
from a stack slows down the VM

R1
R2
R3
R4

Register before Register after

1
2
3
5

R1
R2
R3
R4

1
2
3
5

ADD R1, R2, R3

Faster approach, also common expression 
calculated can be stored for future use.

(but average register instruction > average stack 
instruction)



Compilation Strategies

Compile using the two traditional approaches to translation to machine code and
interpretation.
• A JIT compiler may translate Java bytecode into native machine language

while executing the program.
• The translated parts of the program can then be executed much more quickly

than they could be interpreted.
• This technique gets applied to those parts of a program frequently executed.
• JIT compiler can significantly speed up the overall execution time.

Compile a higher-level (C,C++,Java bytecode) into a native (system-
dependent) machine code -> the resulting binary file can execute natively.

Ahead-of-time
AOT

Just-in-time 
(JIT)

16

Optimizing the execution of applications by continually profiling the applications
each time they run and dynamically compiling frequently executed short
segments of their bytecode into native machine code.
1. Identify hot loops
2. Tracing phase
3. Optimization
4. Compilation

Tracing 
Just-in-time 

(JIT)



The Rise of Android
Android is an operating system developed by Google, based on a modified version of the Linux Kernel.

• Initially developed by Andy Rubin et al. @Android Inc., later (2005) bought by Google
• It adopts the Linux Kernel 4.4 although it does not support X, GNU
• Applications are written using the Android SDK and Java (together with C/C++/Go/Kotlin)

17

Why Java?
• Write once, run anywhere!
• A large swath of developers is the Java Community Process (JCP), which is the mechanism for 

developing standard technical specification for Java technology. Thanks to the JCP, the Java 
language has been extensively revised to address all kinds of different programming problems

• Large number of open source libraries and development tools available to make developers' 
lives easier.

• 3,617,779 app!
• 2 billion monthly active users
• 87.7% share of the global market
• 1.5 million daily Android activation
• 4000 different Android devices (500 carriers)

Impressive facts and figures



The Android heart: Dalvik VM

• Linux kernel of the Android OS spawns a new Dalvik VM instance 
for every process to improve general stability

• Since Android 2.2 Dalvik featured Tracing-JIT
• After Android 4.3 Dalvik was abandoned 

Dalvik is a register-based VM that executes applications written for Android

JAVA 
SOURCE 

CODE

JAVAC
COMPILER

DALKIK
VIRTUAL 

MACHINE

JAVA BYTE 
CODE

DEX
COMPILER

DALVIK 
BYTE 
CODE



19

The Android new heart: Android Runtime (ART) VM
ART performs the translation of the application’s bytecode into native instructions (AOT), later 

executed by the device's runtime environment
• Increased time (for the compilation) when an application is installed,
• Increased application space of media storage
• Supports the same input bytecode as Dalvik (backcompatible)
• Improvement of the overall execution efficiency
• Reducement of power consumption
• Improved battery autonomy on mobile devices
• Faster execution of applications
• Improved memory allocation

JAVA 
SOURCE 

CODE

JAVAC
COMPILER

ART
VIRTUAL 

MACHINE

JAVA BYTE 
CODE

DEX
COMPILER

NATIVE 
CODE

ART



20

Conclusions

• The world in 2020 is very different from ‘90 although most of modern 
languages are 30 years old!

• Computers hardware got (thousand) times better, software and operating 
system got complex and sophisticated too.

• Java technologies demonstrated to be effective in the course of the last decades
• Java portability, scalability, modularity and open community made a hit
• Java enabled the World Wide Web as we know it
• The client-side java plugins (NPAPI) had a great past while now phased out
• The new life of the defunct NPAPI plugins are the Android App, still Java 

based!
• Now it’s up to you to shape the future of the computing, HAPPY CODING!


