
[bookmark: _GoBack]
Activity 4: Methods

Java programs (and so Android apps..) are organized into classes, each of which has one or more methods, each of which has one or more statements. Writing methods allows you to break down a complex program into smaller blocks of reusable code. You will actually be able to reuse whatever algorithm you developed so far.

Content Learning Objectives
After completing this activity, students should be able to:

· Apply methods from the Math class based on their documentation.
· Explain the syntax of a method declaration (parameters and return type).
· Draw a diagram that shows the call stack at a given point of execution.

Process Skill Goals
During the activity, students should make progress toward:

· Tracing the execution of methods to determine contents of memory. (Critical Thinking)

[bookmark: Math_Methods]Model 1	Math Methods
Consider the following methods defined in the Math class:

public static int abs(int a)
public static double log(double a)
public static double pow(double a, double b)
public static double random()
public static int subtractExact(int x, int y)
Note this list isn’t exhaustive; Math has over 70 methods in total. To invoke methods from another class (like Math), you must first specify the class name:

value = abs(-5); // Error: cannot find symbol
value = Math.abs(-5); // correct

 (
say

“math

dot

abs”.

Her
e

is

the

Java

documentation

for

the

methods

listed

above:
)The period in this example is called the dot operator. When reading the above code out loud, you would say “math dot abs”. Here is the Java documentation for the methods listed above:

	Modiﬁer and Type Method and Description

	static int
	abs(int a)

	
	Returns the absolute value of an int value

	
	

	static double
	log(double a)

	
	Returns the natural logarithm (base e) of

	
	a double value.

	static double
	pow(double a, double b)

	
	Returns the value of the ﬁrst argument

	
	raised to the power of the second

	
	argument.

	static double
	random()

	
	Returns a double value with a positive

	
	sign, greater than or equal to 0.0 and less

	
	than 1.0.

	static int
	subtractExact(int x, int y)

	
	Returns the diﬀerence of the arguments,

	
	throwing an exception if the result

	
	overﬂows an int.

1. What type of value does Math.random() return? Give an example of what it would look like.

2. When invoking a method, what do you need to specify before the method name and after the method name?

3. For each method, write a Java statement that invokes it and assigns the result to a variable.

4. When defining a method, what do you need to specify before the method name and after the method name?

5. Define a method named average that requires two integers x and y and returns a double.

 (
What

you

wr
ote

for

the

previous

question

is

called

the

method’
s

signature
.

The

variables

declared

inside

the

par
entheses

are

called

parameters
.

When

invoking

the

method,

the

values

you

pr
ovide

are

called

arguments
.

Since

ar
guments

will

be

assigned

to

parameters,

their

types

must

be

compatible.
)

1. How many parameters and arguments does each method have? In the table below, what is the relationship between the last two columns?

	Method
	# Params
	# Args

	abs
	
	

	log
	
	

	pow
	
	

	random
	
	

	subtractExact
	
	

	println
	
	

Name=________________________

2. Consider the statement System.out.println("Price: " + price); the value of
price is 9.99. What is the argument that println receives?

3. Consider the statement System.out.printf("Price: %f", price); where the value of
price is 9.99. Why does println use plus and printf use comma to specify the arguments?

[bookmark: Invoke_and_Return]Model 2	Invoke and Return
Each statement in this program invokes (or calls) a method. At the end of a method, Java returns
to where it was invoked. The list of events on the right illustrates how the program runs.

	public class Model {

 public static void main(String[] args) {
 System.out.println("First line.");
 threeLine();
 System.out.println("Second line.");
 }

 public static void newLine() {
 System.out.println();
 }

 public static void threeLine() {
 newLine();
 newLine();
 newLine();
 }
}
	INVOKE println
RETURN to line 5
INVOKE threeLine
 INVOKE newLine
 INVOKE println
 RETURN to line 11
 RETURN to line 15
 INVOKE newLine
 INVOKE println
 RETURN to line 11
 RETURN to line 16
 INVOKE newLine
 INVOKE println
 RETURN to line 11
 RETURN to line 17
RETURN to line 6
INVOKE println
RETURN to line 7

4. How many lines of source code invoke the println method?

5. How many times println invoked when the program runs?

6. For each INVOKE on the right, draw an arrow to the corresponding line of code. (Plan ahead so that crossing lines will still be legible.)

7. What is the output of the program?

8. When Java sees a name like x, count, or newLine, how can it tell whether it’s a variable or a method?

9. What is the difference between a method and a variable? What do they have in common?

10. In your own words, describe what methods are for. Why not just write everything in main?

[bookmark: Stack_Diagrams]Model 3 Stack Diagrams
Each method has its own area of memory to store parameters and other variables. When a method is invoked, Java allocates this memory on the call stack. For convenience, we draw “stack” diagrams upside down.

[image:]		

Note: The signature for System.out.println is public void println(String x).

public static void printTime(int hour, int minute) {
 System.out.println(hour + ":" + minute);
}

public static void main(String[] args) {
 int hour = 11;
 int minute = 59;
 printTime(12, 15);
}

11. Based on the diagram, how many methods does the program call?

12. Based on the diagram, how many variables does the program have?

13. How do stack diagrams extend the memory diagrams we’ve seen previously?

14. How is it possible that two variables with the same name can have different values?

15. Draw a stack diagram to show the state of memory just before println is called. Assume the user inputs the value 10. (You should be able to do this kind of math without a calculator.)

public static void show(double c) {
 double f;
String str;
f = c * 1.8 + 32;
str = String.format("%.1f C = %.1f F\n", c, f);
System.out.println(str);
}

public static void main(String[] args) {
double c;
Scanner in = new Scanner(System.in);
System.out.print("Enter temperature in Celsius: ");
c = in.nextDouble();
show(c);
}

16. What is the difference between the String.format method (used in the previous question) and System.out.printf ?
image1.jpeg

