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Preface

What is Discrete Mathematics?

The word discrete in mathematics is in contrast to the word continu-
ous. For example, the set of integers is discrete, while the set of real
numbers is continuous. Thus, discrete mathematics describes a collec-
tion of branches of mathematics with the common characteristic that
they focus on the study of things consisting of separate, irreducible,
often finite parts. Although largely neglected in typical pre-college
mathematics curricula, discrete mathematics is essential for develop-
ing logic and problem-solving abilities. Questions located within the
realm of discrete mathematics naturally invite creativity and innova-
tive thinking that go beyond formulas. Furthermore, the cultivation
of logical thinking forms a necessary foundation for proof-writing. For
these reasons, discrete mathematics is crucial (do we like this word?)
for undergraduate study of both mathematics and computer science.

Goals of the Book

Simply stated, the goal of Journey into Discrete Mathematics is to
nurture the development of skills needed to learn and do mathemat-
ics. These skills include the ability to read, write, and appreciate a
good mathematical proof, as well as a basic fluency with core mathe-
matical topics such as sets, relations and functions, graph theory, and
number theory. The content and the corresponding requisite mathe-
matical thinking are appropriate for students in computer science and
other problem-solving disciplines, but the content presentation and the
nature of the problem sets reinforce the primary goal of training math-
ematicians. Throughout the book, we emphasize the language of math-
ematics and the essentials of proof-writing, and we underscore that the
process is very important in mathematics.

Entry-level discrete mathematics serves as an excellent gateway to
upper-level mathematics by priming students’ minds for upper-level
concepts. Journey into Discrete Mathematics is designed for use in the
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2 PREFACE

first non-calculus course of a mathematics major, employing a writ-
ing style that models a high degree of mathematical accuracy while
maintaining accessibility for early college students. For example, the
treatment of inclusion-exclusion provides both informal and technically
precise explanations. Ultimately, the goal behind this approach is com-
munication: we want to model and teach students to communicate both
accurately and clearly.

Journey into Discrete Mathematics utilizes problems and examples to
lay the foundation for concepts to be encountered in future mathe-
matics courses. For example, the chapter on relations and functions
introduces students to definitions such as one-to-one and onto; several
problems in Chapter 4 guide students through definitions of continuity
using nested quantifiers; the treatment of greatest common divisor fore-
shadows finding the GCD of polynomial functions; the binomial and
multinomial theorems are presented as tools for combinatorial count-
ing; and Euler’s totient function and Fermat’s Little Theorem are im-
portant number theoretic concepts that students will see again in an
Abstract Algebra course. The homework questions are divided into
sections according to difficulty, spanning the gamut from routine to
quite challenging. The first section generally includes exercises that
are more routine or computational, meant to give students a chance
to practice given techniques, while the latter sections generally consist
of problems that require creativity, synthesis of multiple concepts, or
proofs.

This book takes the time to describe the origins of important discrete
math topics as well as connections between concepts. The treatment
of matrices references Arthur Cayley’s first use of matrices; the intro-
duction of Fibonacci numbers is placed within historical context; the
work on inductive thinking and proof by induction exhibits care for
making connections with deductive thinking, the Well-ordering Princi-
ple, and other mathematical concepts. Inspirational quotes throughout
the book and the incorporation of the first names of mathematicians in
examples and exercises (with a corresponding summary page providing
a brief biography for each one mentioned) contribute to familiarizing
students with the names of key figures within discrete mathematics.
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Features of the Book

Convince Me Chapter. This opening chapter contains a selection of in-
teresting, non-standard problems of varying degrees of difficulty. Read-
ers are invited to think creatively and argue persuasively as they work
to find solutions. This process cultivates an understanding of the im-
portance of making a good mathematical argument, while setting the
tone for the problem-solving nature of the book. Moreover, many of
the solutions in this chapter foreshadow the mathematical techniques
and theorems that will be encountered later in the book.

Hook Problems. In the manner of the Convince Me problems, each
chapter begins with an intriguing and challenging problem intended to
capture the reader’s interest. Each hook problem can be solved using
techniques to be developed in the chapter and usually reappears later
in the chapter, either as an example or as a homework problem.

Presentation of Logic. Chapters 3 and 4 of the book combine the top-
ics of sets, logic, and proof-writing in a distinctive way. This approach
helps to highlight the high level of congruity between concepts such
as DeMorgan’s Laws for sets and logic, membership tables and truth
tables, logical operators and set operators. The chapter on logic and
proof-writing appears early in the book to help students bridge the gap
between intuitive thinking and the formal presentation of an argument,
both of which are necessary in mathematics.

First Thoughts and Further Thoughts. Solutions to many examples
in the book are preceded by “First Thoughts,” describing the initial
thought-process that one might engage in when first considering a new
problem. This is intended to be both helpful and reassuring to stu-
dents who might be intimidated by seeing final polished proofs and
assuming that “real” mathematicians can produce these immediately,
without any intermediary struggles or failed attempts. First Thoughts
help train students in the ways that mathematicians actually operate.
Similarly, “Further Thoughts” often follow a solution in order to pro-
vide additional insight about, alternative approaches to, or extensions
of the given solution; once again, the goal is to cultivate a spirit of
doing mathematics.

Advanced Topic Chapters. Several core topics (counting, number the-
ory, and graph theory) are addressed twice in this book: first in an
introductory chapter covering standard content, and later in a chapter
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with extended optional (often, but not always, more advanced) mate-
rial. This provides instructors with flexibility to customize the course,
depending on their particular goals, or expand beyond a typical first
course in discrete mathematics.

Course Outline

This book is designed to be used as a stand-alone text for a three-credit
or four-credit discrete mathematics course for average to above average
math majors who are learning to write proofs; however, since there is
more material in this book than can be covered in a single semester,
instructors will have to make some choices. For students who have al-
ready had an introduction-to-proofs course, select portions of the first
six chapters of the book can be covered rather quickly, and the last half
of the book can serve as a main text for a junior-level course in com-
binatorics. If this book is supplemented with a few extra topics (such
as probability, solving recurrence relations, or finite-state machines),
then there is enough material for a two-semester sequence in discrete
mathematics.

With that goal in mind, we suggest one design for such a three-credit
course. The second column in Table 1 lists the core sections we be-
lieve should be covered. We estimate that the core sections can be
covered in about thirty-four 50-minute lectures. The remaining class
periods could be used for review days, testing days, and optional sec-
tions from the third column. The first column of the table lists sections
containing material that is essential for students to know before cov-
ering corresponding sections of the middle two columns. The middle
columns contain material that is used in sections listed in the fourth
column, though they may not be absolute prerequisites. For example,
although matrices (first addressed in Section 2.3) also appear in Chap-
ter 9 (Graph Theory), one need not study Section 2.3 in order to be
able to understand the essential components of Chapter 9.
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Table 1. Section priorities and interdependencies

Prerequisites sections for → Core Sections Optional Sections → Material used in
1.1 – 1.2

2.1
2.2 Chapters 4, 5, 6, 7, 12

2.3 5.1, 5.2, Chapter 9
3.1 – 3.6 Chapter 4

3.7
2.2, 3.1–3.6 4.1 – 4.2 proofs throughout book

4.2 4.3
2.2, 3.1–3.6 4.4 – 4.5 proofs throughout book

2.2 5.1 5.2, 5.3, 9.1
2.2 5.2 7.4, 9.1
2.2 5.3

5.4 6.1, 6.2 Chapter 11
6.1, 6.2

4.2, 5.3 6.3 – 6.4 proofs throughout later chapters
6.5

2.2, 6.3 7.1 12.1
2.2, 6.3 7.2 Chapter 12
2.2 7.3 12.4

2.2, 6.3 7.4
2.2 7.5 – 7.6 12.4

8.1 – 8.3 Chapters 9 and 11, 13.2
8.4 11.3, 11.4

8.5
8.3 9.1 Chapter 10, 13.4

9.2
9.3 13.1, 13.2

9.4 13.1, 13.2
6.4 9.5

Chapter 4 10.1 – 10.2
3.2, 3.4, 3.6, 8.3 11.1

2.2 11.2
11.3 11.5

Chapter 8 11.4
Chapter 8, 11.3 11.5

7.1 12.1
2.2 12.2
7.4 12.3

7.3, 12.3 12.4
7.4, 12.3 12.5
9.1, 9.4 13.1

6.4, 9.1, 9.3, 9.4 13.2
9.1, 9.4 13.3
9.1, 9.4 13.4





CHAPTER 1

Convince Me!

Obvious is the most dangerous word in mathematics.

– E.T. Bell (1883–1960)

How did you learn how to ride a bicycle? If you learned as a child,
you may have first ridden a tricycle and then a bicycle with training
wheels before attempting to balance on a two-wheeler. Although you
probably first understood how a bicycle works by watching someone
else use one, and perhaps an adult ran along behind with a hand on
the back of the bike during your first tentative rides, the primary way
in which one becomes an expert bicyclist is through practice.

The same is true of mathematics. You cannot learn to do mathematics
simply by watching someone else do mathematics. To become adept,
you must be willing to practice, sometimes failing and sometimes suc-
ceeding, even if only partially. In this chapter, we encourage you to
“dive in” to mathematics by presenting you with problems that are
easy to understand and of variable difficulty to solve.

You may already have an idea of what mathematical problems are, but
we hope to expand your view. Some of the challenges that we pose
in the next section may not even seem like math! A “mathematical
problem” isn’t necessarily the same as an “exercise”; an exercise is for
practicing a known procedure, whereas a problem is something to be
solved when the approach may not be obvious.

Improving skill in problem-solving may require learning to recognize
patterns, developing theoretical notions, and determining how best to
use a variety of mathematical tools and techniques. The particular fo-
cus of this book is on solving problems in discrete mathematics — which
has some differences from solving problems in, say, calculus. Under-
standing the language of discrete mathematics, including symbols and
definitions, will be necessary for understanding the concepts; just as
familiarity with common abbreviations (e.g., “BRB”) allows for quick
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everyday communication, so the language and symbolism of mathe-
matics will allow for quicker communication of mathematical ideas. In
discrete mathematics, this will be the language of sets, logic, functions,
enumeration, and graphs, and it will be introduced systematically as
needed.

In mathematics, simply knowing how to solve a problem is rarely satis-
fying. A second important step is to persuade others that your solution
is correct. Thus, another invaluable purpose of this book is to develop
skills in constructing mathematical proofs. We will demonstrate and
discuss a variety of types of proof, illustrating sound methods for con-
vincing others of a correct solution. As with problem-solving, though,
the development of proof-writing expertise requires practice, practice,
and more practice. Without further ado, let us begin!

1.1. Opening Problems

Although the problems below are quite varied in nature, each one has
a solution that does not require high-level mathematics. We urge you
to select several of interest to solve. Try to give a convincing argument
as to why your solution is correct.

(1) In a game for two players, seventeen coins lie on a table. The
players take turns, at each turn removing between one and four
coins from the table. The player who takes the last coin loses.
If you are going to play this game, ask yourself if you prefer to go
first or if you should ask your friend to go first — or does it matter?

As an example, suppose you go first and take four coins (leav-
ing thirteen coins on the table), your friend goes second and takes
four coins (leaving nine coins), you then take two coins (leaving
seven coins), your friend takes one coin (leaving six coins). Now
things look bad for you: you take two coins and your friend wisely
removes three more, forcing you to take the last coin and lose the
game.

Could you have done something different so that you would
have won the game? It might be hard to find a solution immedi-
ately. Some may have insight and see the strategy right away, but
for most people, finding the solution requires previous experience
or lots of experimenting; this is what most mathematicians would
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do when faced with this problem.

Additional experimentation should lead you to conjecture that
the player who goes first can always win; that is, no matter how the
second player plays the game, if the first player follows the proper
strategy, she can always win. Give a convincing argument of this
conjecture.

(2) Must there be two people in Los Angeles who have the same num-
ber of hairs on their heads? You may say that the answer is clearly
“yes” since there are surely at least two completely bald people in
L.A. Let’s agree to disregard the people who are completely bald.
Now, what is your answer?

(3) What is the last digit of 31776? We believe most of you can answer
this question by finding a pattern for the last digit of 31, 32, 33,
and so on, looking for a pattern. Having done that, what about
finding the last two digits of 31776?

(4) Consider a single-elimination tournament, which starts with n ≥ 1
teams. In the first round, all teams are divided into pairs if n is
even, and the winner in each pair passes to the next round (no
ties). If n is odd, then one random (lucky) team passes to the next
round without playing. The second round proceeds similarly. At
the end, only one team is left — the winner. Find a simple formula
for the total number of games played in the tournament.

(5) Suppose you have access to an unlimited supply of 3-cent and 5-
cent stamps. If you need to send an envelope that requires 47
cents, can you create the exact postage using these stamps? What
other postage amounts can you pay by using combinations of these
stamps? Describe as many as possible.

(6) Can you create a 3× 3 rectangular array of numbers (repeat num-
bers permitted) such that the sum of numbers in every row is 10
and the sum of numbers in every column is 10? Can you do the
same for a 3× 4 array of numbers?

(7) Which is larger, 3400 or 4300?

(8) You are a participant in a game show in which there are three doors
to choose between. Behind each door is an amount of money. You
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choose a door and are shown the amount behind it. If you wish,
you may take the money and the game ends. If you decline, you
may choose another door, and see the amount behind that door,
but you forfeit the opportunity to accept the amount behind the
previous door. You may accept the prize behind the second door;
if you decline, then you must take the amount behind the third
door, sight unseen. If you play this game optimally, what is the
probability that you will win the largest amount of money possible?

(9) Consider a simple game for two players in which the players take
turns placing coins on a round table. The coins may not overlap
and may not be moved once they are placed. The loser is the first
person to be unable to place a coin on the table. Is there a winning
strategy? If so, which player has the advantage, the one going first
or the one going second?

(10) There are seven cups on a table — all standing upside down. You
are allowed to turn over any four of them in one move. Is it possible
to eventually have all of the cups right-side-up by repeating this
move?

(11) A large chocolate bar is composed of 40 smaller squares in a 5 by
8 grid. How many cuts will it take to cut it into those 40 squares
if one must always slice along grid lines and the knife may pass
through only one chunk of chocolate per cut (i.e., one cannot line
up several previously sliced chunks and cut them simultaneously).

(12) Represent the number 1492 as a sum of two positive integers whose
product is the greatest. Next try to maximize the product if you
are permitted to use three positive integers. Finally, maximize the
product if any number of positive integers is permitted. (It may
be helpful to experiment with a much smaller number than 1492.)

(13) A group of persons sits in a circle, each holding an even number of
pieces of candy. Each person simultaneously gives half of his or her
candy to the person on the right. Any person who ends up with an
odd number of pieces of candy selects one piece from a large bowl
of candy in the center of the circle, so that once again all persons
have an even number of pieces. Show that after enough iterations
of this procedure all persons will have the same number of pieces of
candy. Is this statement also true if at each iteration each person
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gives half of his or her candy to each person to the left and right?

(14) Students in an elementary school classroom are seated in five rows,
with each row having six desks. From each row, a tallest student
is chosen; then, a shortest of these five students is chosen (call this
student A). Now, from each column, a shortest student is chosen;
then, a tallest of these six students is chosen (call this student B).
Who is taller, A or B? Can they be the same height? Can A and
B be the same person?

(15) Given a group of 21 people, show that there are as many ways to
select an odd number of them as there are ways to select an even
number of them. (Each “way” is determined by the people cho-
sen, not by the number of people chosen. So, choosing Al and Sal
counts as a different selection than choosing Hal and Cal.)

(16) Two bright math students, Terence and Srinivasa, each have a
number on their forehead. Each can see the number on the other
person’s forehead, but not the number on his own. They are told
that the two numbers are consecutive positive integers. They start
the conversion with Terence saying, “I don’t know my number.”
Srinivasa thinks for a moment and replies, “I don’t know my num-
ber either.” They then repeat this exact same conversation, for
a total of 53 times, at which point Terence exclaims, “Hey, I just
figured out my number!” Srinivasa immediately follows, “Yeah?
Me too!” What is the number on Terence’s forehead?

(17) Consider a group of 100 prisoners. They are told they will be given
a collective chance at a pardon if they can work together to solve
the following problem.

At the appointed time all 100 prisoners will come into a large
room to gather in a circle. Each prisoner will have a hat placed
on his head as he enters, and it will be one of seven colors (Red,
Orange, Yellow, Green, Blue, Indigo, or Violet). Each prisoner will
be able to see all hats except his own. One at a time, each prisoner
will guess out loud the color of his or her own hat. If at most one of
the 100 prisoners is incorrect, they will all go free; otherwise they
will all be executed. The prisoners can plan a strategy ahead of
time, but once they are brought into the room, there will be no
communication, other than that each prisoner can hear all of the
other guesses. No clues can be given based on eye contact, posi-
tioning of the prisoners, timing of responses, etc. What strategy
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could the prisoners adopt to best guarantee survival? Under this
strategy, what is the probability of survival?

1.2. Solutions

(1) According to the rules of the game, whichever player is faced
with only one coin on the table will lose. In fact, once there
were only six coins left, and it was your turn, you were bound
to lose: if you took n (with 1 ≤ n ≤ 4) coins your friend
would take 5 − n of them, leaving just one coin. Therefore,
each player’s goal should be to leave his opponent with six
coins on his turn.

Arguing backwards from there, if you can leave your oppo-
nent with eleven coins, if he takes n of them (1 ≤ n ≤ 4), then
you can always take 5 − n of them, which will be a number
between 1 and 4, as required. Then it will be his turn with six
coins remaining. Similarly, whoever’s turn it is with sixteen
coins remaining will lose if the other player always selects 5−n
coins immediately after n coins are taken.

In general, if a player is, at any turn, faced with 5k+1 coins
(for any integer k), he will lose if his opponent plays strate-
gically. Therefore, no matter how many coins are initially on
the table, the first player can always win if it is possible to
use the first turn to remove an appropriate number of coins so
that 5k + 1 coins remain for his opponent for some integer k.
If both players follow the proper strategy, the first player will
lose only when there there are 5k+1 coins on the table at the
start of the game for some integer k.

Can you generalize the strategy to the case where initially
m coins are placed on the table, and each player may remove
between 1 and t coins on his turn?

(2) The population of Los Angeles is about 4 million people. It
is possible for them all to have a different number of hairs on
their heads only if the human head could have 4 million hairs
on it. How many hairs could fit on a human head? Suppose
that half of a typical human head is covered with hair. If the
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radius of the head is 6 inches, and it is assumed to be spheri-
cal, half of the surface area would be (1/2)4π62 = 72π < 250
square inches. How many hairs are there per square inch? As-
suming the follicles are 20 per linear inch would give 400 per
square inch, and about 100,000 hairs on a human head.1 This
is nowhere near 4 million, so we can safely conclude that it
must be the case that two residents of Los Angeles have the
same number of hairs on their heads.

(3) The consecutive powers of 3 are 3, 9, 27, 81, 243, 729, etc.,
so the last digits seem to follow the pattern 3, 9, 7, 1, and
then the cycle repeats. Indeed, multiplying each digit in that
sequence by 3 gives the next one in the sequence, wrapping
around. Every fourth power of 3, therefore, has 1 as its last
digit, and since 1776 is divisible by 4, 31776 has 1 as its last
digit.

Now, can you figure out what the last two digits of 31776

would be? While the above method works, we will find a faster
solution in Chapter 7 that uses properties of modular arith-
metic.

(4) As is often the case, this is best approached by way of small
cases. Suppose there are only four teams (call them A, B, C,
and D) participating in the tournament. In round 1, A com-
petes against B and C competes against D. Assume that A
and C are the winners of their respective games; these teams
then compete against each other. Regardless of whether A or
C wins, the total number of games played will be 3.

Can you easily see how this generalizes? If not, try dia-
gramming the situation for some other values of n. You should
see that if there are n teams competing, the number of games
played is always n− 1. In fact, this is sensible: in each game,
exactly one team is eliminated, and all teams but one (the
tournament winner) will be eliminated at some point.

(5) There are many ways to obtain 47 cents, including nine 3-cent
stamps and four 5-cent stamps. One cannot obtain a total of
7 cents, as can readily be checked. However, 8 = 2(4), 9 =

1A quick internet search confirms that this is a reasonable approximation.
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3(3), and 10 = 2(5). Note that 11, 12, and 13 cent amounts
can be obtained by adding one 3-cent stamp to each of the
previous configurations, respectively. Similarly one can con-
tinue adding 3-cent stamps to these arrangements to obtain
any integer amount greater than 13 cents. This idea will be
explored more formally in Chapter 6 (Induction).

(6) A 3 × 3 grid with a 10 in each of the three positions on one
of the diagonals and a 0 in all other positions will meet the
requirements given.

It is not possible in a 3× 4 rectangular array, however. If
each column sum is 10, and there are four columns, then the
total of all the entries in the array will be 120. On the other
hand, if each row sum is 10, and there are three rows, the total
of all of the entries in the array will be 90. This is a contra-
diction, so such a grid is not possible.

(7) Note that 3400 = (34)100 and 4300 = (43)100. Since 34 = 81 is
larger than 43 = 64, we see that 3400 > 4300.

(8) You should pick any door, see the amount behind it, and de-
cline it. Then select another door and compare its value to
the first one. If it is higher, keep it. If it is not, take the
amount behind the third door. Label the three amounts as
Low, Medium, and High, and note there are six corresponding
permutations of L, M, and H. You should then verify that the
above strategy will enable you to select the largest amount in
half of them. Two such orderings are (M, L, H) and (M, H, L).
An ordering in which you will not obtain the largest amount
is (H, M, L).

(9) The first person can win if she places her coin in the exact cen-
ter of the table. After that point, she always takes her turn
by placing a coin diametrically opposite of the coin placed by
the second player. The space will always be available, so she
will always be able to move.

(10) Think about the possible numbers of glasses that can be right-
side-up at any given time. We will discuss a formal solution
to this problem in Chapter 10.
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(11) Every time a cut is made, one chunk of chocolate becomes two
chunks of chocolate. Thus, no matter which order the pieces
are cut, it will take 39 cuts to break the original bar into 40
squares.

(12) The maximum value of ab if a + b = 1492 is 7462, when
a = b = 746. Of course, one can try other values of a and
b in a futile effort to exceed this product, but a short proof
will show an improvement is impossible. If a = 746 − x and
b = 746 + x, then ab = 7462 − x2. Clearly the product will be
maximum when x = 0, which means a = b = 746.

This solution will generalize to a = b = n/2 if 1492 is re-
placed by n. Of course, if n is not even, you must modify
a and b appropriately since we are required to use integers.
What does this generalization tell you about how to maximize
the product of a set of more than two positive integers whose
sum is 1492? Try with three integers whose sum is 10.

(13) Consider what happens to the difference between the greatest
and fewest number of candies held by anyone as the rounds
progress. A formal approach for solving problems like this will
be discussed in Chapter 10.

(14) Certainly, it is possible that A and B may be the same per-
son. For example, this will happen if the students are seated
in order of height, with the shortest student in the desk that
is in Row 1 and Column 1, the next shortest student in the
Row 1, Column 2 spot, and so on, with the tallest student in
the desk that’s in Row 5, Column 6.

Let h(A) and h(B) be the heights of students A and B,
respectively. Then, in the general case, h(A) ≥ h(B). To see
this, for each i, define ti to be the height of the tallest student
in Row i; then h(A) = min{ti : 1 ≤ i ≤ 5}. Similarly, define
sj to be the height of the shortest student in column j; then,
h(B) = max{sj : 1 ≤ j ≤ 6}. Clearly, if A and B are in the
same row, h(A) ≥ h(B). By definition, h(B) = sk for some k,
and B is a shortest student in column k. Likewise, h(A) = tl
for some l, and A is a tallest student in Row l. Let h(l, k) be
the height of the student in Row l and Column k. It follows



16 1. CONVINCE ME!

that h(A) ≥ h(l, k) ≥ h(B).

(15) If a group of n persons is chosen, then 21− n persons remain.
Notice that n and 21− n have different parities (one must be
even and one must be odd). Therefore, for each group with an
odd number of persons, there is a corresponding group with
an even number of persons, and vice-versa. These two sets of
groups are therefore in one-to-one correspondence, so the sets
have the same size.

(16) Try the problem with a smaller number of rounds than 53 (say,
two rounds). What must Terence’s number be if he immedi-
ately knew his number after seeing Srinivasa’s number? What
must it be if he could figure out his number as soon as Srini-
vasa first acknowledged that he didn’t know his own number?
We will see this problem again in Chapter 6 where we learn to
use induction as a proof technique.

(17) Assign each color a number and have the first person add up
all the “numbers” he sees. We will return to this problem
when we discuss modular arithmetic in Chapter 7.
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Think of an integer between 41 and 59, inclu-
sive. Subtract 25 from your number and write
down the resulting 2-digit number. Now sub-
tract 50 from your original number and square
the result to form another 2-digit number, us-
ing a zero as the first digit if necessary. Ap-
pend this 2-digit number to the right side of
the one you wrote down earlier, forming a 4-
digit number. This 4-digit number should be
the square of the original number. Why does
this work? Can you amend the method to
work for numbers outside of the 41-59 range?



CHAPTER 2

Mini Theories

To many, mathematics is a collection of theorems.
For me, mathematics is a collection of examples;

a theorem is a statement about a collection of
examples and the purpose of proving theorems is

to classify and explain the examples...

– John B. Conway (1937 –)

In the first chapter, Convince Me!, we gave many examples of convinc-
ing arguments in solving mathematical problems. In this chapter we
continue our journey into mathematics in a more formal way by ex-
ploring several familiar mathematical theories, developing them from
the ground up, in order to serve as a microcosm for how mathematical
theories are created. By a mathematical theory, we mean a collec-
tion of undefined terms, a set of axioms (statements that are accepted
as being true), definitions, theorems — all of which relate to a given
mathematical topic — and numerous results which can be derived from
them. The topics we undertake in this chapter, properties of real num-
bers, divisibility of integers, and matrices, will likely not be new to the
reader. This leaves us free to focus our attention on the importance of
definitions and the development of the theories.

2.1. Introduction

We begin with definitions and properties of real numbers that are com-
monly used in mathematics. The reader should not dismiss the impor-
tance of the “elementary” notions given here, as they will be used to
build mathematical theory in later sections of the book.

The following notation for sets of numbers is commonly used, other
than perhaps [n] to denote the first n natural numbers.

19
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• N = {1, 2, 3, . . .} is the set of positive integers, also known as
the set of natural numbers.

• [n] = {1, 2, 3, . . . , n}.
• N0 = {0, 1, 2, 3, . . .} is the set of nonnegative integers, also
known as the set of whole numbers.

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of integers.
• Q is the set of rational numbers. Its elements can be rep-
resented by fractions m

n
or m/n, where m,n ∈ Z and n ̸= 0.

Notice that such a representation is not unique:

3/5 = (−6)/(−10) = 60/100.

Alternatively, the elements of Q can be represented by periodic
decimals. Such a representation, again, is not unique:

23917

1000
= 23

917

1000
= 23.917 = 23.917000 . . . = 23.916999 . . . .

• R is the set of all real numbers. They can be represented
by decimals, both periodic (e.g., 3.45 = 3.45454545 . . .) and
non-periodic (e.g., 0.101001000100001 . . .).

Nineteenth century German mathematician Leopold Kronecker (1823–
1891) is quoted as saying, “God created the integers; all else is the work
of mankind.”[16] In fact, the above sets of numbers form nested subsets:
for example, the natural numbers are contained within the integers, the
integers are contained within the rational numbers, and the rational
numbers are contained within the real numbers. We will not go through
the rigorous process of demonstrating how one constructs the reals from
the integers (though it can be done). Rather, while acknowledging that
the domain of discourse of discrete mathematics is almost always the
integers, we accept that the following basic “laws” apply to all real
numbers.

Property 2.1. Let S represent any one of Z, Q, or R. The following
properties hold for all a, b, and c in S.

(1) Closure: The sum, difference, and product of two numbers in
S is also in S.

(2) Commutative laws: a+ b = b+ a and ab = ba.
(3) Associative laws: (a+ b) + c = a+ (b+ c) and (ab)c = a(bc).
(4) Distributive law: a(b+ c) = ab+ ac.
(5) Additive and Multiplicative Identities: 0+ a = a and 1 · a = a.
(6) Additive Inverse: There is an additive inverse in S, denoted

−a, such that a+ (−a) = 0.
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(7) Multiplicative Inverse: If S = Q or S = R and a ̸= 0, there is
a multiplicative inverse in S, denoted a−1, such that a·a−1 = 1.

(8) Exponential laws: (an)m = anm, (ab)n = anbn, and anam =
an+m for all real numbers m and n.

Notice we did not attempt to prove the above properties. Indeed, the
properties seem so basic that one could rightly ask what assumptions
would even be permitted when trying to prove them. However, part
of the purpose of this chapter is to demonstrate how a mathematical
theory is built, and we have the opportunity to do that now. The
statements in the following theorem may seem as obvious as the ones
just listed, but we will see that each one is actually a consequence of
one or more parts of Property 2.1.

Theorem 2.2.

(1) For any real number a, the additive inverse of a is unique.
(2) The number 0 is the unique additive identity for R.
(3) For any real number a ̸= 0, the multiplicative inverse of a is

unique.
(4) The number 1 is the unique multiplicative identity for R.
(5) For any real number a, −(−a) = a.
(6) For any real numbers a and b, −(a+ b) = (−a) + (−b).
(7) For any real number a, a · 0 = 0.
(8) For any real number a, −1 · a = −a.
(9) For any real numbers a and b, (−a)(−b) = ab.
(10) For any real number a, if a ̸= 0 and ab = ac, then b = c.
(11) Zero product property: For any real numbers a and b, if ab = 0,

then a = 0 or b = 0.

Proof. We provide a guided proof of each property. In each proof there
are a series of “Why?” questions. In lieu of completing a problem set
for this section, the reader should supply a reason (usually a property
from Property 2.1 or from an already proven part of this theorem) that
justifies each statement in the proof preceding a “Why?” query.

(1) To prove the uniqueness of the inverse, assume that b and c
are both additive inverses of a. Then

b = b+ 0 (a. Why?)

= b+ (a+ c) (b. Why?)

= (b+ a) + c (c. Why?)

= 0 + c (d. Why?)

= c. (e. Why?)
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Therefore, b = c, and a has a unique additive inverse.
(2) To show that there is only one additive identity, we let e be an

additive identity and prove e = 0. If e is an additive identity,
then e + a = a for all a (a. Why?). Then for any given a,
e+ a+(−a) = 0 (b. Why?) It follows that e+(a+(−a)) = 0
(c. Why?) Therefore, e+ 0 = 0, so e = 0 (d. Why?). Thus, 0
is the unique additive identity.

(3) To prove uniqueness, assume that b and c are both multiplica-
tive inverses of a. Then ab = ac = 1 (a. Why?) and ab = ba
(b. Why?). It follows that

b = b(1) (c. Why?)

= b(aa−1) (d. Why?)

= (ba)(a−1) (e. Why?)

= (ba)(c) (f. Why?)

= 1 · c = c. (g. Why?)

Thus, b = c and the multiplicative inverse of a is unique.
(4) Assume that e is a multiplicative identity and let a be any

nonzero number. Then a has a multiplicative inverse, a−1. It
follows that

e = e · 1 (a. Why?)

= e(a · a−1) (b. Why?)

= (e · a)a−1 (c. Why?)

= a · a−1 (d. Why?)

= 1. (e. Why?)

This proves 1 is the unique multiplicative identity.
(5) −a has a unique additive inverse (a. Why?), denoted −(−a),

and −(−a)+−a = 0 (b. Why?). On the other hand a+(−a) =
0 (c. Why?). Therefore−(−a) and a are both additive inverses
of −a. This proves that −(−a) = a (d. Why?).

(6) It suffices to show that (−a) + (−b) is an additive inverse of
a+b (a. Why?) Indeed, (a+b)+((−a)+(−b)) = (a+(−a))+
(b+ (−b)) (b. Why?). This sum is 0 (c. Why?), which proves
that (−a) + (−b) is an inverse of a+ b (d. Why?).

(7) a ·0 = a(0+0) (a. Why?), which equals a ·0+a ·0 (b. Why?).
By adding −(a ·0) to both sides of a ·0 = a ·0+a ·0, we obtain
0 = a · 0 (c. Why?).

(8) It suffices to prove that −1 · a is the additive inverse of a (a.
Why?). We have a + (−1 · a) = 1 · a + (−1) · a (b. Why?),
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which equals (1 + (−1)) · a (c. Why?). This value is 0 · a = 0
(d. Why?), which proves that −1 · a is the additive inverse of
a (e. Why?).

(9)

(−a)(−b) = (−1 · a)(−1 · b) (a. Why?)

= (−1)(a)(−1)(b) (b. Why?)

= (−1)(−1)(a)(b) (c. Why?)

= −(−1)(ab) (d. Why?)

= 1(ab) = ab. (e. Why?)

(10) Since a ̸= 0, a has a real-valued multiplicative inverse, a−1. By
assumption, ab = ac; thus, a−1(ab) = a−1(ac), and therefore
(a−1a)b = (a−1a)c (a. Why?). It follows that 1 · b = 1 · c (b.
Why?), so b = c (c. Why?).

(11) If b = 0, we are done. If b ̸= 0, then b has a real-valued
multiplicative inverse, b−1. Then

a = a · 1 (a. Why?)

= a(bb−1) (b. Why?)

= (ab)(b−1) (c. Why?)

= 0 · b−1 = 0. (d. Why?)

Thus, either a = 0 or b = 0, which completes the proof. �

We close the section with discussion of two commonly used functions
in discrete mathematics. For any x, the absolute value of x, denoted
|x|, is defined as

|x| =
{

x if x ≥ 0
−x if x < 0

.

For example, |5| = 5, |0| = 0, and | − 7| = −(−7) = 7. Note that |x|
can be viewed as the distance on the real number line from the number
x to the origin, 0. Clearly, for any a, −|a| ≤ |a|, and for any real
numbers a and b, |a| ≤ |b| if and only if −|b| ≤ a ≤ |b|. Furthermore,
the distance on the real number line between a and b is |a−b| = |b−a|.
(See Figure 1.)

This background provides us with two additional properties. Each one
follows from the definition of operations on real numbers, by consider-
ing various cases for a and b.

Theorem 2.3.
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|a - b | 

|b| = b|a| = - a

b0a

Figure 1

(1) Absolute Value Product: |ab| = |a||b|.
(2) Triangle Inequality: |a+ b| ≤ |a|+ |b|.

While real numbers are the dominant domain of discourse in many
areas of mathematics, most questions in discrete mathematics yield
integral answers. In some cases, a real number must be rounded (up
or down) to obtain an integer. The floor function of a real number
x gives the largest integer less than or equal to x; it is denoted ⌊x⌋.
Therefore,

⌊2.9⌋ = 2, ⌊π⌋ = 3, ⌊−4.2⌋ = −5, and ⌊6⌋ = 6.

Notice that, if x > 0, ⌊x⌋ can be obtained by truncating the decimal
part of x or by rounding down to the nearest integer. If x < 0, trun-
cating does not produce an integer less than x; the floor of a negative
non-integer is one less than the truncation of x.

As an application, consider the problem of finding the number of mul-
tiples of seven that lie between 1 and 100. One could list the successive
multiples of seven and then count them, but a moment of reflection
should lead to the answer of

⌊
100
7

⌋
= ⌊14.29⌋ = 14.

The “round up” counterpart to the floor function is the ceiling func-
tion, which will be explored in the exercises.

2.2. Divisibility of Integers

As we noted in Section 2.1, integers are featured prominently in any
discrete math book. In fact, for the remainder of this book, unless
otherwise stated,

letters a, b, c, . . . will be used to represent integers.

We begin our discussion about integers with a simple statement:

The sum of two even integers is an even integer.
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Undoubtedly, the reader can distinguish between even and odd integers
and is quite certain that this statement is true. How would one prove
it though, based on a definition of even? Many people would define
even integers as those ending in 0, 2, 4, 6, or 8. With this definition,
proving that the sum of two even integers is even would require con-
sidering all possible pairs of numbers ending in the digits 0, 2, 4, 6, or
8 and demonstrating that in all cases, the sum also ends in 0, 2, 4, 6,
or 8. While such a proof is valid, it is quite tedious and would not be
the method of choice of most mathematicians.

Rather, a mathematician would prefer to define a number n to be even
if it can be written as the product of 2 and some integer. Seeing that
the integers that satisfy this definition must be those that end in 0, 2,
4, 6, or 8 is not difficult; at the same time, this definition will be far
more useful in proofs. To wit, here is a proof that the sum of any two
even integers is an even integer.

Proof. Let m and n be any two even integers. Then, by defini-
tion, n = 2j and m = 2k for some integers j and k, in which case
n +m = 2j + 2k = 2(j + k). Since j + k is an integer (by the closure
property) we have demonstrated that the sum of n and m can be writ-
ten as the product of 2 and some integer. Therefore n+m is even. �

Hopefully the above example underscores that a good definition must
be both accurate and useful. This definition of “even” is actually a
special case within the broader notion of divisibility.

For two integers a and b, b ̸= 0, if there exists an integer q such that
a = bq, then we say that b divides a or a is divisible by b, and denote
this relationship by writing b|a. If a = bq, then a is called a multi-
ple of b, b is called a divisor of a, and q is called the quotient of
the division of a by b. For example, 5|(−15) since −15 = 5 · (−3), 2
is a divisor of 20 since 20 = 2 ·10, and 0 is a multiple of 5 since 0 = 5 ·0.

Our use of “the” when referring to “the quotient” above is justified by
the fact that if such q exists, then it is unique. To see this, note that
if a = bq1 = bq2 for some q1 and q2, then b(q1 − q2) = 0. Since we have
assumed b ̸= 0, then by the zero product property, q1 − q2 = 0. This
proves that q1 = q2, so the quotient is unique.
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Why do we need to restrict b from being zero when we say b | a? The
reason is the following. The equality a = 0 · q implies a = 0; therefore
the only number a which seems to allow division by zero is 0 itself. But
0 = 0 · q is correct for every q, which means that the quotient of the
division of 0 by 0 could be any number. This proves to be too inconve-
nient when properties of integers (as well as rational or real numbers)
are discussed, and therefore the division by zero is not defined at all.

We defined an even integer to be an integer divisible by 2; i.e., n is even
if n = 2k for some integer k. In a similar manner, we define an integer
n to be odd if n = 2j+1 for some integer j. It may seem obvious that
no integer can be both even and odd; in a Section 4.5 exercise, you are
asked to prove this.

Though not as elementary as “even” and “odd,” the concept of a prime
number is also familiar, but one which we wish to define formally here.
A positive integer p ̸= 1 is called a prime number, or prime, if it is
divisible only by ±1 and ±p. The first nine primes are 2, 3, 5, 7, 11, 13,
17, 19, and 23. The number 2 is the only even prime; more generally,
a prime number p is the only prime divisible by p. A positive integer
with more than two positive divisors is called a composite number,
or composite. The integer 1 is therefore the only positive integer that
is neither prime nor composite.

The first result of the following theorem has already been proven.
Proofs of the remaining parts of the theorem are asked for in upcoming
problem sets.

Theorem 2.4.

(1) The sum of any two even integers is an even integer.
(2) The sum of any two odd integers is an even integer.
(3) The sum of an even integer and an odd integer is an odd in-

teger.
(4) The product of two odd integers is an odd integer.
(5) The product of an even integer and any other integer is an

even integer.

Part (1) of Theorem 2.4 is the specific case with c = 2 in part (3) of
Theorem 2.5, which lists several important properties related to the
division of integers. Though most of these properties may look famil-
iar or seem obvious—and we are no doubt being redundant in saying
this—mathematical rigor includes being able to prove such statements.
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Short proofs like these are important for learning to apply definitions,
and they help build mathematical understanding. The reader should
study them thoroughly.

Theorem 2.5. For all integers a, b, c, x, and y,

(1) if b | a, then b | ca;
(2) if c | b and b | a, then c | a;
(3) if c | a and c | b , then c|(a+ b) and c|(a− b);
(4) if c | a and c | b , then c|(xa+ yb);
(5) if a ̸= 0, then a and −a are divisors of a;
(6) 1 and −1 are divisors of a;
(7) if b | a and a ̸= 0, then |b| ≤ |a|; and
(8) a nonzero number has a finite number of divisors, whereas zero

is divisible by any nonzero number.

Remark. At this point in the book, we have not provided the reader
with the tools for proving statements such as those in Theorem 2.5.
Therefore, we encourage reading through the proofs below to gain as
much understanding and insight as possible without undue concern for
the formal structure. Proof techniques will be addressed in a formal
manner in Section 4.5. ⋄

Proof.

(1) We need to show that b | ca, i.e., that there exists an integer
q such that ca = bq. If b | a, then a = bq1 for some integer q1.
Then ca = c(bq1) = b(cq1). Since cq1 is an integer by closure,
setting q = cq1, we obtain that b | ca.

(2) We have to show that c | a, i.e., that there exists an integer q
such that a = cq. If c | b and b | a, then b = cq1 and a = bq2
for some integers q1 and q2. Then a = bq2 = (cq1)q2 = c(q1q2).
Setting q equal to the integer q1q2, we find a = qc, which
completes the proof.

(3) We prove the statement for a+b, as the proof for a−b is nearly
identical. We have to show that c|(a+b), i.e., that there exists
an integer q such that a + b = cq. Since c | a and c | b, there
are integers q1 and q2 such that a = cq1 and b = cq2. Then
a+b = cq1+cq2 = c(q1+q2). Since q1+q2 is an integer, setting
q = q1 + q2, we obtain a+ b = cq.

(4) Before we start our proof, we point out that this statement is a
generalization of the previous one. Indeed, taking x = y = 1,
we obtain c|(a+ b), and taking x = 1, y = −1, we get c|(a− b).
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We present two proofs of (4), one based on (3) and (1) and
another that is independent of this theorem.
Proof 1. Since c | a and c | b, from (1) we see that c | xa and
c | yb. It then follows from (3) that c|(xa+ yb).

Proof 2. We have to show that c|(xa + yb), i.e., that there
exists an integer q such that xa+ yb = qc. Since c | a and c | b,
there are integers q1, q2 such that a = cq1 and b = cq2. Then
xa+ yb = x(cq1) + y(cq2) = c(xq1 + yq2). Since xq1 + yq2 is an
integer, setting q = xq1 + yq2 shows that xa+ yb = cq.

Further Thoughts. Since (4) implies (3), and the second proof of (4) is
independent of (3), one might ask why we bothered to prove (3) at all.
The answer is two-fold. First, development of a mathematical theory
most often follows an “inductive” path, i.e., a generalization from par-
ticular cases to a general conclusion. On the other hand, having (3)
proven enabled us to construct the first proof of (4). ⋄

(5) Since a = a · 1 and −a = a(−1), the statement follows. (Both
1 and −1 are integers.)

(6) Since for every integer a, a = 1 ·a = (−1) ·(−a), the statement
follows.

(7) By definition, b | a implies that a = bq for some integer q, and
therefore |a| = |b||q|. Since a ̸= 0, q ̸= 0, and therefore |q| ≥ 1.
Hence |a| = |b||q| ≥ |b|, giving |b| ≤ |a|.

(8) If b | a and a ̸= 0, then (7) gives |b| ≤ |a|. Thus b is an integer
in the set {−a,−a + 1, . . . ,−1, 1, . . . , a − 1, a}. Therefore a
nonzero integer a has at most 2|a| divisors, and this proves
the first statement. The second statement is obvious, since
0 = b · 0 for any b. �

Regardless of how basic the statements of Theorem 2.5 appear, in the
right hands they become powerful tools, which can be used to establish
many interesting and not-so-obvious facts about integers. This is not
always easy and several attempts are often needed to find (and write)
a valid proof. Below we give several examples of simple applications.
We assume that the integers are represented in base ten, so the term
“digit” refers to an integer 0 through 9.

Example 1. Take a 2-digit integer, switch the digits, and subtract the
obtained number from the original one. Prove that the difference will
always be divisible by 9.
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First Thoughts. If your initial reaction is one of disbelief, you should
experiment. Two examples include 83 − 38 = 45 and 75 − 57 = 18;
both 45 and 18 are divisible by 9. The statement seems to be true,
though the examples may not give an indication of why. We should
consider a general way to represent an integer in terms of its digits. In
the base-10 system, the number 83, with digits 8 and 3, can be repre-
sented as 83 = 8(10) + 3. We can generalize this representation to any
2-digit number. ⋄

Solution. Let N be an arbitrary 2-digit number. Then N = 10a+ b for
some digits a and b. After the digits are reversed, we obtain a number
M = 10b+a. Then N−M = (10a+b)−(10b+a) = 9a−9b = 9(a−b).
Since a− b is an integer, 9|(N −M), so the proof is complete. �

The following problem is similar to Problem 5 in Chapter 1.

Example 2. Is it possible to pay an exact total of $100,674 when
buying only $12 items and $32 items?

First Thoughts. In general, if you have no idea how to begin to answer
a question, it is a good idea to try either a simpler or slightly different
problem, and such an approach could be helpful for here. For example,
would it be possible to pay an exact total of $100,673 when buying
only $12 items and $32 items? Hopefully, you will recognize that if
one only buys items whose individual costs are even, an odd total like
$100,673 cannot be obtained. What insight can that give to the orig-
inal problem, though, since 100,674 is even? A slight rephrasing will
help: if one only buys items whose costs are divisible by k = 2, then a
total that is not divisible by k = 2 cannot be obtained. But the same
statement is true if k is replaced by any integer! Now, can you find an
appropriate value of k to help with the given problem? ⋄

Solution. The answer is “No.” To show this we assume the contrary,
and let integers x and y represent the number of $12 items and $32,
respectively. Then the total price is 12x+ 32y = $100, 674. Since 4|12
and 4|32, then 4|(12x + 32y) = $100, 674 (according to Theorem 2.5
(4)). But 4 does not divide 100,674 (check it!). This contradiction
proves that a total of $100,674 cannot be obtained.

The following theorem, known by several names, is used by middle
school students and number theorists alike. It simply says that integers
can be divided to give a unique quotient and remainder.
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Theorem 2.6. ( Division Theorem or Division with Remainder
Theorem or Division Algorithm.) For any two integers a and b,
b ̸= 0, there exists a unique pair of integers q and r, 0 ≤ r < |b|, such
that a = qb+ r.

Here, we give some examples; a proof of the theorem will be given in
Section 6.5, where the method of mathematical induction is used.

(1) If a = 20 and b = 6, then q = 3 and r = 2, since 20 = 3 · 6 + 2
and 0 ≤ 2 < 6.

(2) If a = −20 and b = 6, then q = −4 and r = 4, since −20 =
(−4) · 6 + 4 and 0 ≤ 4 < 6. (Notice that q = −3 and r = −2
do not meet the conditions of the theorem, since r < 0.)

(3) If a = 20 and b = −6, then q = −3 and r = 2, since 20 =
(−3)(−6) + 2 and 0 ≤ 2 < 6.

(4) If a = 0 and b = 7, then q = r = 0, since 0 = 0 · 7 + 0 and
0 ≤ 0 < 7.

If a = qb+ r and 0 ≤ r < |b|, then we will continue calling q the quo-
tient upon dividing a by b and will refer to r as the remainder upon
dividing a by b. Another way of denoting the relationships between a
and b is with modular arithmetic and congruences. These will be ex-
plored more fully in Chapter 7, but for now we simply write a div b = q
and a mod b = r to denote that q is the quotient and r is the remain-
der in the Division Theorem when a is divided by b. This notation is
commonly used when writing pseudocode for programs or algorithms.
In the above examples, we have

(1) 20 div 6 = 3 and 20 mod 6 = 2;
(2) −20 div 6 = −4 and −20 mod 6 = 4; and
(3) 20 div (−6) = −3 and 20 mod (−6) = 2;
(4) 0 div 7 = 0 and 0 mod 7 = 0.

The quotient and remainder upon the division of a by b can be obtained
from the floor function. If b > 0, then q =

⌊
a
b

⌋
, and solving for r yields

r = a − b ·
⌊
a
b

⌋
. If b < 0, perform the division with |b| and negate the

resulting quotient; in symbols, q = −
⌊
−a

b

⌋
for b < 0. In particular,

notice that (−a) div b and a div (−b) need not have the same value.

Example 3. If a = 5k + 2, then when a is divided by 5, k is the quo-
tient and 2 is the remainder. However, if a = 5k+(−2), then we should
not conclude that the quotient is k and the remainder is −2, because
the remainder must satisfy 0 ≤ r < 5. Rather, we must rewrite to
obtain a non-negative remainder. We find that a = 5(k− 1)+3, so the
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quotient is k − 1 and the remainder is 3.

Example 4. Every integer n can be written in one and only one of the
four forms, 4k, 4k + 1, 4k + 2, or 4k + 3, where k is an integer. This
fact follows from the Division Theorem — just divide the dividend n
by b = 4 and note that only four remainders are possible.

The next two examples demonstrate less obvious applications of Theo-
rem 2.6. In each case, we use the Division Theorem to rewrite the gen-
eral variable n in terms of the given divisor and appropriate remainder.

Example 5. Suppose that n mod 8 = 5. What is the remainder of
the division of n3 + 5n by 8?

Solution. By the Division Theorem, n = 8k + 5, for some integer k.
Then

n3 + 5n = (8k + 5)3 + 5(8k + 5)

= 83k3 + 3(82k2)5 + 3(8k)52 + 53 + 5(8k) + 52

= 8(82k3 + 3(8k2)5 + 3k52 + 5k) + 150

= 8(82k3 + 3(8k2)5 + 3k52 + 5k + 18) + 6.

Thus (by the Division Theorem again), n3 + 5n = 8q + 6, where
q = 82k3 + 3(8k2)5 + 3k52 + 5k + 18. Therefore, the remainder when
n3 + 5n is divided by 8 is 6; i.e., (n3 + 5n) mod 8 = 6.

Example 6. Prove that M = n(n+ 1)(2n+ 1) is divisible by 6 for all
integers n.

Proof. For any n, by the Division Theorem, n = 6k + r, where k is an
integer and r is an element of the set {0, 1, 2, 3, 4, 5}. Let us evaluate
M for each possible value of r.

(1) If r = 0, then M = 6k(6k + 1)(12k + 1).
(2) If r = 1, then

M = (6k + 1)(6k + 2)(12k + 3) = 6(6k + 1)(3k + 1)(4k + 1).
(3) If r = 2, then

M = (6k + 2)(6k + 3)(12k + 5) = 6(3k + 1)(2k + 1)(12k + 5).
(4) If r = 3, then

M = (6k + 3)(6k + 4)(12k + 7) = 6(2k + 1)(3k + 2)(12k + 7).
(5) If r = 4, then

M = (6k + 4)(6k + 5)(12k + 9) = 6(3k + 2)(6k + 5)(4k + 3).
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(6) If r = 5, then
M = (6k+5)(6k+6)(12k+11) = 6(6k+5)(k+1)(12k+11).

As we see, in each of the cases 6|M , and the proof is complete. �

The previous example shows that by concentrating on the remainders
one can reduce a problem of establishing a property of infinitely many
integers to a problem of verifying the property for a finite number of
cases. The importance of this idea is hard to overstate, and we will
return to it when we study congruence relations in Chapter 7.

For our final example, we return to the problem given at the beginning
of the chapter.

Example 7. Think of an integer between 41 and 59, inclusive. Sub-
tract 25 from your number and write down the resulting 2-digit number.
Now subtract 50 from your original number and and square the result.
Append this value to the one you wrote down earlier, forming a 4-digit
number. Verify that this 4-digit number is the square of the original
number, and prove that it happens in the general case as well.

First Thoughts. In problems like this, where we wish to find a general
solution, it is imperative that we find a convenient way to represent the
general number. In this case, if the first and second digits of our num-
ber are a and b, respectively, the form (ab) is not very helpful, because
it cannot be manipulated algebraically. Before reading on, think for a
moment how a (the tens digit) and b (the units digit) can be formed
into an algebraic expression equalling the given 2-digit number. ⋄

Solution. If a and b are the tens and ones digits, respectively, then
from the Division Theorem, our 2-digit number can be expressed as
10a+ b. Then, according to the method, 10a+ b− 25 will be the first
two digits of the square of the original number, while (50− (10a+ b))2

will form the last two digits. Thus, if the method works, the square
of our number will have 10a + b − 25 hundreds and (50 − (10a + b))2

ones. Algebraically, we have thus reduced the problem to showing that
(10a+ b)2 and 100(10a+ b−25)+(50− (10a+ b))2 are equal. We leave
it to the reader to use the algebraic rules of Property 2.1 to show this
is the case. �

Exercises and Problems

(1) Compute the following floor function values
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(a) ⌊π/2⌋
(b) ⌊−π/2⌋
(c)

⌊
1+

√
5

2

⌋
(d)

⌊
−
√
10

⌋
(e) ⌊0⌋

(2) Suppose n ∈ N. Prove that
⌊n
2

⌋
=

n

2
when n is even and

⌊n
2

⌋
=

n− 1

2
when n is odd.

(3) The ceiling function of a real number x returns the smallest integer
greater than or equal to x; it is denoted ⌈x⌉. For instance, ⌈9.25⌉ = 10
and ⌈−4.6⌉ = −4. Compute the following ceiling function values.
(a) ⌈π/2⌉
(b) ⌈−π/2⌉
(c)

⌈
1+

√
5

2

⌉
(d)

⌈
−
√
10

⌉
(e) ⌈0⌉

(4) Use Exercise 2 as a guide for determining
⌈n
2

⌉
when n is even and⌈n

2

⌉
when n is odd.

(5) For each given value of a and b, find the appropriate values of q and r
according to the Division Theorem.
(a) a = 30 and b = 7.
(b) a = −30 and b = 7
(c) a = −30 and b = −7.
(d) a = 120 and b = 8.
(e) a = −120 and b = 8.

(6) Find a div b and a mod b for each problem below. In which cases does
b|a?
(a) a = 91, b = 7
(b) a = 344, b = 6
(c) a = −253, b = 11
(d) a = 162, b = −21
(e) a = 0, b = 10

(7) How can one denote that an integer k is even using mod notation?
Similarly, how can one denote that an integer j is odd?

(8) (a) Is 0 even, odd, or neither? Explain your answer.
(b) The hypotheses of the Division Theorem require that the divisor

b is not 0. Which conclusion(s) of the Division Theorem fail to be
true in the event that b = 0?

(9) Prove that the sum of two odd integers must be an even integer.
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(10) Show that if a|b and b|a, then a = b or a = −b.

(11) Is the converse1 of the statement in Problem 10 correct? Namely, if
a = b or a = −b, then must it follow that a|b and b|a? Explain your
answer.

(12) Construct the converse statements to Theorem 2.5 (1) and (7). Can
you find a counterexample for each?

(13) For each of the following equations, determine the subset of real num-
bers for which it is true.
(a) ⌊x⌋ = −⌊−x⌋
(b) ⌊x+ 1⌋ = ⌊x⌋+ 1
(c) ⌊x⌋ = ⌈x⌉
(d) ⌊x⌋+ 1 = ⌈x⌉

(14) Prove that the only common positive divisor of two consecutive integers
is 1.

(15) Prove that the sum of any four consecutive integers is an even number.

(16) In each case below, determine whether or not there are integers x and
y satisfying the given equation.
(a) 16x+ 10y = −22.
(b) 24x− 54y = 28,010.

(17) Devise an efficient (as few strokes as possible) method for which you
can use a calculator to determine the quotient and remainder when
a is divided by b (useful when a is a large integer, but not so large
that it cannot be entered in a calculator). For example, suppose a =
23, 920, 534, 206 and b = 172.

(18) Prove that the product of
(a) three consecutive integers is always divisible by 3;
(b) five consecutive integers is always divisible by 5;
(c) Generalize the statements (a) and (b). Can you prove your gener-

alization?

(19) Suppose that n mod 9 = 5. What is n(n2 + 7n− 2) mod 9?

(20) Prove that the difference of squares of two consecutive odd integers is
always divisible by 8.

(21) Show that a square of an integer cannot give the remainder 2 when
divided by 3; i.e., n2 ̸= 3k + 2 for any integers n, k.

(22) Modify the technique given in Example 7 to work for integers other
than those in the 41 to 59 range.

1See Section 4.1 for more discussion about the converse.
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(23) Explain why the following fast method of squaring integers ending with
digit 5 works. Let N = (a5) where a is the number formed by all the
digits of N but 5. Then N2 can be obtained by multiplying a by a+ 1
and attaching 25 at the end of the product.

For example: 352 = 1,225 can be computed by multiplying a = 3 by
a+1 = 4 and attaching 25 to 12. Similarly, 2352 = 55,225 can be found
by computing the product 23 · 24 = 552 and attaching 25.

(24) Prove that in a right triangle with integer side lengths, the length of at
least one leg must be divisible by 3.

(25) Under what conditions will the sum of n consecutive integers be divisible
by n? (For example, the number 16+17+18+19+20+21+22 = 133
is divisible by 7.) Can you prove your answer?

(26) Prove that in a right triangle with integer side lengths, the length of at
least one side must be divisible by 5.

(27) Prove that at least one of the last two digits of a square of an integer
is even.

2.3. Matrices

Since their conception in the 1840’s by Arthur Cayley and James Sylvester,
matrices have grown to become one of the most important tools used in
all areas of mathematics and quantitative sciences. Algebra students use
matrices to store and manipulate the coefficients from systems of equations.
Matrices serve as the primary means of representing transformations from
one geometric space to another. Computer programmers rely on matrices,
referring to them as two-dimensional arrays. Matrices and matrix opera-
tions create crucial algebraic systems for many areas of abstract algebra. In
discrete mathematics, one of the primary uses of matrices is in representing
relations between elements of sets in a manner that is efficient for both stor-
age and computation. This application of matrices will appear in Chapters
5 and 9. In this section, we define operations on matrices and compare their
properties with those of real numbers given in Section 2.1.

A matrix is defined to be a rectangular array of numbers, meaning an ar-
rangement of numbers in rectangular form with no empty positions. The
plural form of matrix is matrices. The size of a matrix is determined by
the number of horizontal rows and vertical columns. A matrix with m
rows and n columns is said to have size m× n, read “m by n,” for positive
integers m and n. When m = n, it is called a square matrix.

Each of the mn positions in an m× n matrix is assigned an “address” in a
manner reminiscent of Cartesian coordinates. If the number appears at the
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intersection of Row i (counting from the top down) and Column j (counting
from left to right), where 1 ≤ i ≤ m and 1 ≤ j ≤ n, it is called the (i, j)-

entry of the matrix. For instance, the 2 × 4 matrix

[
1 −4 0 −2
0 5 7 −1

]
has

−4 as its (1, 2)-entry and 7 as its (2, 3)-entry.

Matrices are typically named with uppercase Latin letters, A, B, M , etc.,
while the entries are denoted with the corresponding lowercase letter. For
instance, the (i, j)-entry of matrix A is denoted aij , giving a generic m× n

matrix the form A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

.
We sometimes write A = [aij ] when a direct description of the entries of
matrix A is needed. The diagonal entries of A = [aij ] are those for which
i = j, namely a11, a22, . . . , and particularly for square matrices, they are
said to form the main diagonal of A. A square matrix for which the (i, j)-
entry is 0 when i ̸= j is called a diagonal matrix.

Certain arithmetic operations can be defined on matrices of the same size
as a straightforward extension of familiar operations on real numbers. If
A = [aij ] and B = [bij ] are m×n matrices, the sum of A and B is the m×n
matrix with (i, j)-entry equaling aij + bij ; in symbols, A + B = [aij + bij ].
Subtraction of matrices of the same size is also accomplished component-
wise, namely A − B = [aij − bij ]. A scalar multiple of a matrix A is
obtained by multiplying each entry of A by a real number2 k; that is kA =
[kaij ].

Example 8. Compute B − 2C for B =

[
1 5
−2 6

]
and C =

[
3 0
4 −2

]
.

Solution. As B and C are 2× 2 matrices, 2C is 2× 2, and the difference of
B and 2C is defined:

B − 2C =

[
1 5
−2 6

]
− 2

[
3 0
4 −2

]
=

[
1 5
−2 6

]
−

[
6 0
8 −4

]
=

[
1− 6 5− 0
−2− 8 6− (−4)

]
=

[
−5 5
−10 10

]
.

Matrix multiplication is defined in a very different manner from the component-
wise simplicity of matrix addition. Its definition arises from Cayley’s use of
matrix multiplication for the composition of two transformations (functions)

2In the language of matrices and vectors, real numbers are often called scalars.
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in geometric settings. We first define the inner product of the i-th row of
A with the j-th column of B as

[
ai1 ai2 · · · aip

]
·


b1j
b2j
...
bpj

 = ai1b1j + ai2b2j + · · ·+ aipbpj . Notice that this

requires that the number of columns of A equals the number of rows of B.
The product of matrices A and B is defined to be the matrix AB whose
(i, j)-entry is the inner product of the i-th row of A with the j-th column
of B. In contrast to matrix addition, which requires that matrices have the
same size, the sizes required for matrix multiplication can be characterized
as follows: If A is an m×p matrix and B is a p×n matrix, then the product
AB is an m× n matrix.3

Example 9. Compute the product AB for matrices

A =

4 −3
1 2
0 −1

 and B =

[
1 5
−2 6

]
.

Solution. First note that the number of columns of A equals the number of
rows of B (namely, two), hence the product AB is defined, and its size is
3× 2. Using the definition of matrix multiplication,

AB =

4 −3
1 2
0 −1

[
1 5
−2 6

]

=

4(1) + (−3)(−2) 4(5) + (−3)(6)
1(1) + 2(−2) 1(5) + 2(6)

0(1) + (−1)(−2) 0(5) + (−1)(6)

 =

10 2
−3 17
2 −6

 .

Notice that the product BA is not defined for matrices A and B in Exam-
ple 9, since the number of columns of B (two) does not equal the number
of rows of A (three). This is our first indication that matrix multiplication
is not commutative: BA need not equal AB. Of course, multiplication of
square matrices of the same size is always defined, but this does not re-

solve the issue of commutativity. Let B =

[
1 5
−2 6

]
and C =

[
3 0
4 −2

]
.

We invite the reader to gain practice multiplying matrices to confirm that

BC =

[
23 −10
18 −12

]
and CB =

[
3 15
0 8

]
.

3Geometrically, this indicates that AB maps n-dimensional space to m-
dimensional space. It is the composition of B, mapping n-dimensional space to
p-dimensional space, with A which maps p-dimensional space to m-dimensional
space.
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The n× n matrix with 1’s on the main diagonal and 0’s elsewhere is called
the n × n identity matrix, denoted In. Given the advantageous arrange-
ment of 0’s and 1’s, appropriately sized identity matrices fulfill the role of a
multiplicative identity (see Property 2.1). As an example, let A be defined
as in Example 9; then

AI2 =

4 −3
1 2
0 −1

[
1 0
0 1

]
=

 4(1) +−3(0) 4(0) +−3(1)
1(1) + 2(0) 1(0) + 2(1)

0(1) + (−1)(0) 0(0) + (−1)(1)

 = A

and similarly I3A = A. In general, for m × n matrix A, ImA = A and
AIn = A.

While matrix division is not an acceptable operation, the topic of multiplica-
tive inverses of square matrices is crucial. Given a matrix A, if there exists
a matrix B for which AB = In for some n, then A is said to be invertible
and B is called the inverse of A. It can be proven that A and B must be
square matrices of size n×n, BA = In, and the inverse of A is uniquely de-
termined. The inverse of A is denoted A−1. A procedure for computing the
inverse of an n×n matrix may be found in standard texts in college algebra,
pre-calculus, and linear algebra and is omitted here. We will describe the
simple process for computing the inverse of any invertible 2× 2 matrix and
use this to demonstrate that many matrices are not invertible.

If A =

[
a b
c d

]
with ad− bc ̸= 0, the inverse of A is A−1 = 1

ad−bc

[
d −b
−c a

]
.

The reader should verify that AA−1 = I2 and A−1A = I2, with the sug-
gestion that the scalar multiple 1

ad−bc be held in reserve until the matrix
multiplication is complete. There are infinitely many 2 × 2 matrices for
which ad− bc is 0; this is the collection of all 2× 2 matrices which are not
invertible. This is in substantial contrast with the real numbers for which
there is only one element that has no multiplicative inverse.

Besides the issues of commutativity of multiplication and matrix inverses,
the properties of real numbers given in Property 2.1 have correspondent
properties in matrix arithmetic. Considering both scalar multiplication and
matrix multiplication, the list is more extensive for matrices. For ease of
presentation, these properites will be described for the set of n×n matrices,
for any fixed natural number n; we denote this set by Mn. Analogous
properties also hold for non-square matrices with sizes appropriate for the
operations.

Property 2.7. Suppose A, B, and C are matrices in Mn and r and s are
real numbers. Let 0 denote the matrix in Mn with all zero entries.

(1) Closure: The sum, difference, and product of two matrices in Mn

are also in Mn.
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(2) Commutative law: A+B = B +A.
(3) Associative laws: (A+B) + C = A+ (B + C), (AB)C = A(BC),

r(sA) = (rs)A, and r(AB) = (rA)B = A(rB).
(4) Distributive laws: A(B +C) = AB +AC, (A+B)C = AC +BC,

r(A+B) = rA+ rB, and (r + s)A = rA+ sA.
(5) Additive and Multiplicative Identities: 0+ A = A and AIn = A =

InA.
(6) Additive Inverse: There is an additive inverse in Mn, denoted −A,

such that A+ (−A) = 0.
(7) Multiplicative Inverse: If A is an invertible matrix, then AA−1 =

In = A−1A.

First Thoughts. The notation −A in Part (6) simply indicates that each
entry of A is negated. It is equal to the scalar multiplication (−1)A, as a
result of using Theorem 2.2(8) of Section 2.1 for each entry. In the same
way, each property of matrix arithmetic not only appears to be similar to
a law for real numbers found in Property 2.1, but its truth (or “proof”) is
based on the corresponding law for real numbers, which is applied in each
entry of the matrix. ⋄

Proof. Students will be asked to verify many of these claims for the special
case of 2×2 matrices in the Exercises and Problems. Part (2) is shown here
as a model to emulate.

Consider two arbitrary 2× 2 matrices A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Then

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
=

[
b11 + a11 b12 + a12
b21 + a21 b22 + a22

]
=

[
b11 b12
b21 b22

]
+

[
a11 a12
a21 a22

]
= B +A.

Take notice of the use of commutativity of addition of real numbers in each
entry. �

Two important properties of inverses follow directly from the discussion
above. The order of the factors in the expanded form of (AB)−1 may seem
surprising at first, but the lack of commutativity of matrix multiplication
dictates this order.

Property 2.8. Suppose A and B are invertible matrices in Mn.

(1)
(
A−1

)−1
= A
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(2) (AB)−1 = B−1A−1

Proof. The proof of (1) will be provided as a pattern for proving the other
results about inverses, which will be requested in the Problems section. The

notation
(
A−1

)−1
refers to the inverse of the matrix A−1, which is the unique

matrix X for which A−1X = In. From Property 2.7(7), X = A satisfies this

matrix equation. By uniqueness,
(
A−1

)−1
= A. �

For an m×n matrix A = aij , the transpose of A, written AT , is the n×m
matrix with (i, j)-entry equaling the (j, i)-entry of A; in symbols, AT = [aji].
Thus, A and AT have rows and columns interchanged. In the event that
AT = A, A is said to be a symmetric matrix. A symmetric matrix is
necessarily a square matrix with symmetry about the main diagonal. In
particular, A = [aij ] is an n × n symmetric matrix if and only if aji = aij
for 1 ≤ i, j ≤ n.

Property 2.9. Suppose A, B, and C are matrices in Mn, with C invertible,
and suppose r is a real number.

(1)
(
AT

)T
= A

(2) (A+B)T = AT +BT

(3) (AB)T = BTAT

(4) (rA)T = rAT

(5)
(
CT

)−1
=

(
C−1

)T
Parts (1)–(4) of Property 2.9 are true for all non-square matrices for which
the operations are defined. The sizes of the matrices in Part (3) are note-
worthy. If A is m×p and B is p×n, giving AB size m×n, then BT is n×p
and AT is p×m, making BTAT size n×m as expected.

Exercises and Problems

(1) Perform the matrix operations for the matrices defined as follows:

A =

6 −10
2 −3
4 0

, B =

 4 2 1 6
−10 3 9 1
4 −8 6 −2

, C =

[
0 −8 5
−3 4 −6

]
,

D =

 5 10 5
−7 9 −10
0 4 −2

, E =

−2 4 8
−7 6 −1
4 5 3

.
(a) D + E
(b) 4E − 3D
(c) DE
(d) ED
(e) DB
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(f) CT

(g) A+ CT

(h) BTE

(2) Positive powers of square matrices have the natural meaning. For
natural number k, Ak is the product of k factors of matrix A.
Refer to the matrices in Exercise 1.
(a) Compute E2.
(b) Explain why A2 is not defined.

(3) For A, B, C, D, and E, given in Exercise 1, determine which of
the following operations are defined and perform those operations.
(a) A+D
(b) CB
(c) BA
(d) BTA
(e) ATCT

(f) C2

(g) D2

(4) Verify each property using generic 2 × 2 matrices in the manner
modeled in the proof of Property 2.7(2).
(a) Closure of matrix addition: if A and B are matrices in M2,

then A+B is in M2

(b) Closure of matrix multiplication: if A and B are in M2, then
AB is in M2

(c) Associativity of matrix addition: (A+B)+C = A+(B+C)
(d) Left distributivity: A(B + C) = AB +AC
(e) Additive identity: 0+A = A
(f) Multiplicative identity: AI2 = A
(g) Additive inverse: A+ (−A) = 0
(h) Multiplicative inverse: AA−1 = I2

(5) Verify each property using generic 2 × 2 matrices in the manner
modeled in the proof of Property 2.7(2).

(a)
(
AT

)T
= A

(b) (A+B)T = AT +BT

(c) (AB)T = BTAT

(d)
(
CT

)−1
=

(
C−1

)T
(6) Verify each property by showing that the purported inverse satis-

fies the necessary equation as demonstrated in the proof of Prop-
erty 2.8(1).
(a) (AB)−1 = B−1A−1

(b)
(
CT

)−1
=

(
C−1

)T
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(7) Let S denote the set of all diagonal 2 × 2 matrices. Note that a

generic element of S has the form D =

[
d1 0
0 d2

]
. For each of the

following properties, determine whether the property is true for S.
For each property that holds in S, demonstrate that it is true using
generic matrices from S.
(a) Closure of matrix addition
(b) Closure of matrix multiplication
(c) Additive identity in S
(d) Multiplicative identity in S
(e) Commutativity of multiplication

(8) Let D =

[
d1 0
0 d2

]
be a diagonal matrix.

(a) Under what conditions will D be invertible?
(b) If D is invertible, determine the form of D−1.
(c) If D is invertible, must D−1 be diagonal?

(9) Suppose k is a natural number and D =

[
d1 0
0 d2

]
is a diagonal

matrix.
(a) Compute D2.
(b) Determine a concise formula for Dk.

(10) Suppose A is a square matrix. Using the definition of symmetric
matrix and the properties in this section, explain why A+AT must
be a symmetric matrix.

(11) Prove that a 2 × 2 matrix A is not invertible if and only if one
column is a multiple of the other. Hint: Use the condition that

A =

[
a b
c d

]
is invertible if and only if ad− bc ̸= 0.


